

Lamb – Meating Consumer Expectations Graham Gardner

EVENT SUPPORTERS:

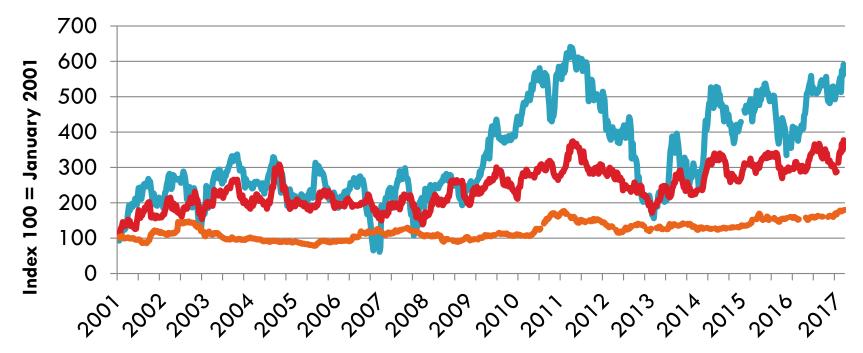
Key Points

Industry Projections

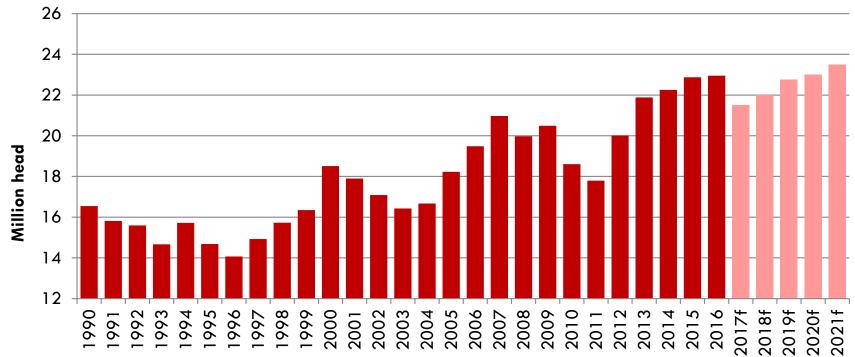
Major Markets

Lean Meat Yield

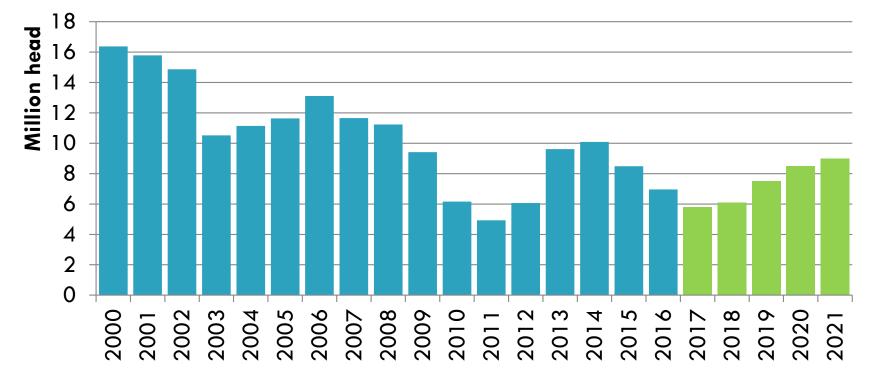
Livestock Data Link


Eating quality

□ Future grids – based on objective measurement of the carcase


Australian sheep and wool markets

Source: MLA, AWI



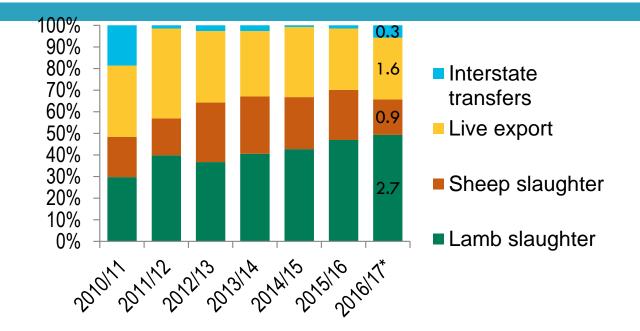
21.5 million lambs to slaughter in 2017

Source: ABS, MLA forecasts

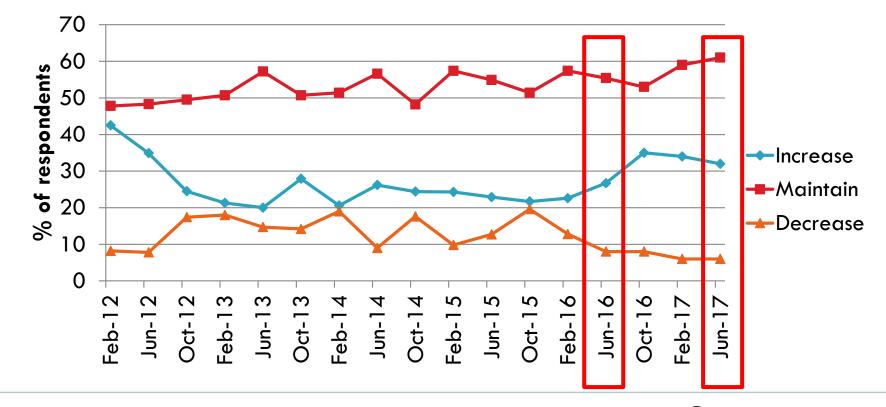
Australian Wool

Annual sheep slaughter – 5.8 million

Source: ABS, MLA forecasts


Australian Wool Australian Limited

Department of Primary Industries and Regional Development

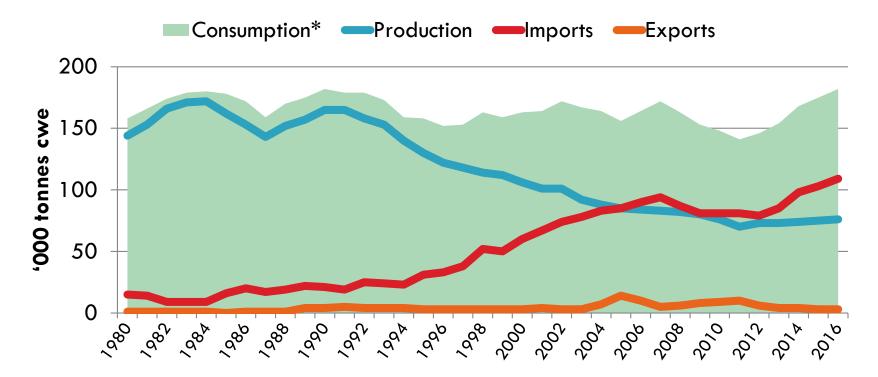

GOVERNMENT OF WESTERN AUSTRALIA

Similar pattern in WA

This work is supported by **Royalties for Regions** funds through the **Sheep Industry Business Innovation** project. Source: ABS, PIRSA data, DPIRD analysis

Enticing time to retain ewes

Making More From Sheep


()

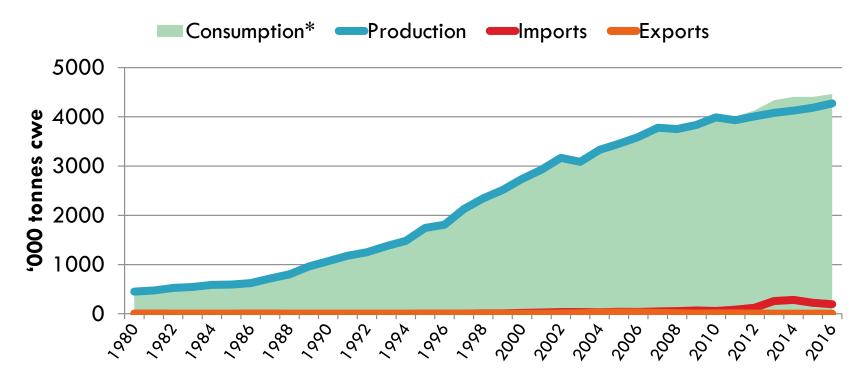
Major Markets

- USA still strong and total export up
- Very valuable chilled lamb market
- Encouraging building of this market in last 4 years

Sheepmeat in the US

Source: FAO

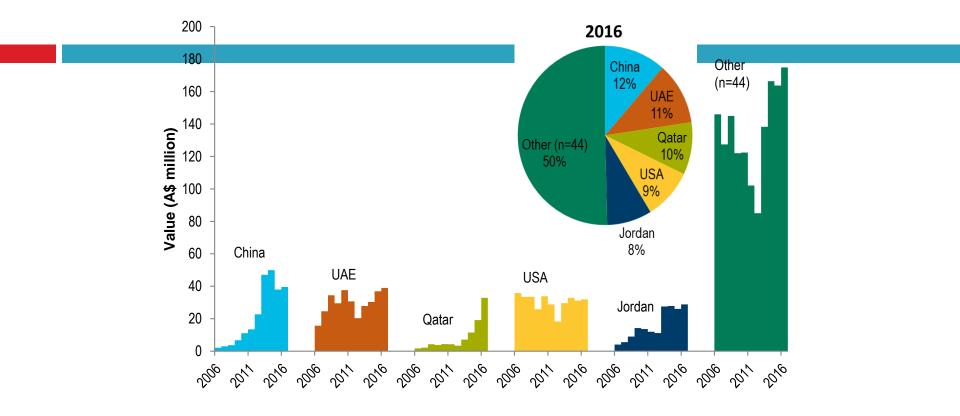
* Estimated Consumption = (Production + Imports) - Exports


Major Markets

China has become a significant importer since 2012

- They cannot meet the needs of their market this trend is forecast not to change
- Same tonnage as USA but less value (frozen, cheaper cuts, mutton)
- □ Will the value of this market increase ?

Sheepmeat in China



Source: FAO

* Estimated Consumption = (Production + Imports) - Exports

In WA = Middle east, China and USA are the biggest

Market outlook – note of caution in the short term

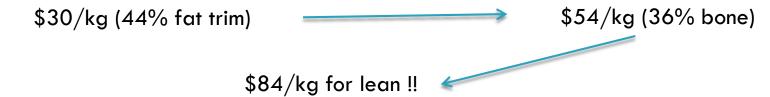
There has been a near on 40% decrease in processing capacity on Eastern sea board

□ The timing of lamb turn off is very season dependent

- Seasons in Southern Australia have been tight in many regions
- Given all this, at some point killing space will be at a premium in the eastern

states

□ MESSAGE: This might have a flow on effect to WA ?????


Lean Meat Yield

LMY is <u>especially</u> important in lamb:

Value lean meat yield - Lamb example

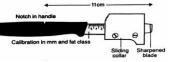
Score 5

Carcase Wt 23.0 kg

GR 22.0 mm

CT lean 55%

Score 2


Carcase Wt 23.0 kg

GR 8.0 mm

CT lean 63%

Prime Lamb or Fat Lamb?

Lean and fat weights

Score 4 Fat: 7.36kg Lean: 12.65kg

8-Rih

pside

Lean Trim

Score 2 Fat: 5.06kg Lean: 14.49kg

Rona

Retail Value: \$316

	22.97 kg	15	\$144.02
Fat	6.869	NCV	nil
Bone	5.152	NCV	nil
	10.951		\$144.02
Lean Trim	2.571	7.49	\$19.26
Hindshank	.541	7.49	\$ 4.05
Rump	.463	16.99	\$ 7.87
Round	.804	15.99	\$ 2.86
Survey Sours	.103	12.00	2 3.10

Retail Value: \$362

	23.56 k	\$173.04	
Fat	4.683	NCV	nil
Sone	13.295 5.584	NCV	\$173.04
ean Trim	3.290	7.49	\$24.64
Indshank	.606	7.49	\$ 4.54
ump	.530	16.99	\$ 9.00
ound	.931	15.99	\$14.89
VELSHUT			

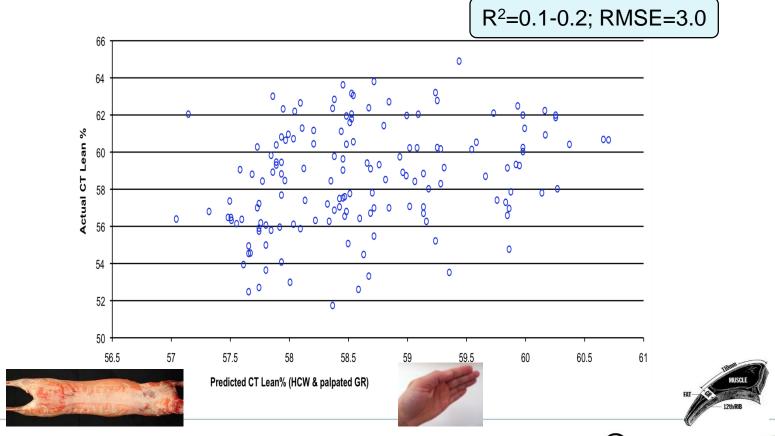
Round

Trim

Simplistically – difference is extra \$46

- □ 8% units of CT lean difference
- \Box = 1.84kg of meat
- \Box = \$46 of extra value (lean @ \$25/kg)
- □ This is too simple ! boning costs

Lean Meat Yield


Genetic gain

Efficiency

- □ On farm/feedlot lean or muscle cheaper to grow than fat
- Processing too much fat = trim
- Consumers
 - Little fat in retail cabinets these days
 - □ 80%+ consumers remove fat before or after cooking
 - 'Fatty' still a significant complaint for lamb

Palpated GR and HCW

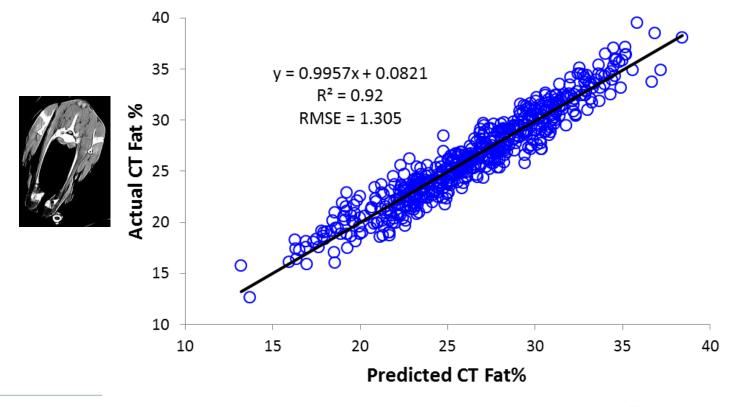
Making More From Sheep

AWI Australian Wool Innovation Limited

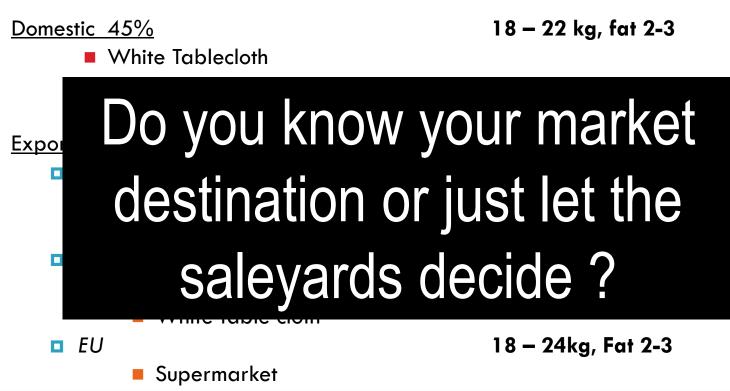
0

DEXA

- Dual energy x-ray
- Initially to drive robots
- Whole carcase and region yield



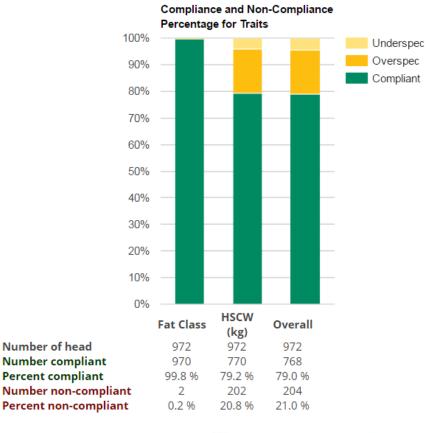
DEXA predicting CT Fat%



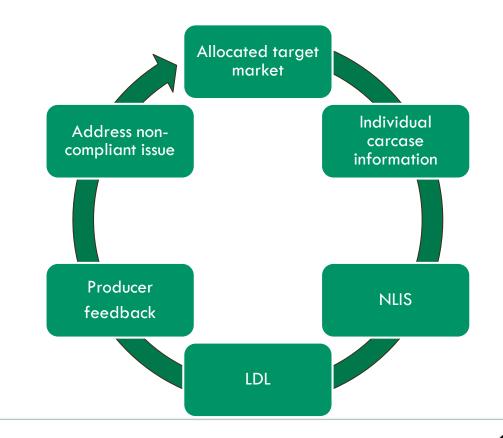
What market do you produce lambs for? What carcass spec are you aiming for?

Domestic 45%	18 – 22 kg, fat 2-3
White Tablecloth	
Butcher	
Supermarket	
Export 55%	
Middle East	16 – 18 kg, Fat 1-2
Bagger airfreight Lambs	
Middle East Restaurant	
American Market	18 – 26kg, Fat 2-4
Supermarket	
White table cloth	
EU	18 – 24kg, Fat 2-3
Supermarket	

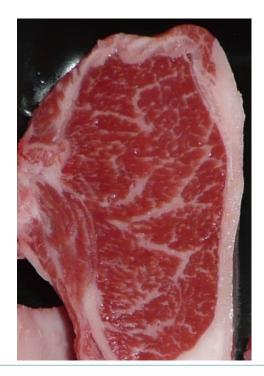
Making More From Sheep


Australian Wool All Australian Wool Innovation Limited What market do you produce lambs for? What carcass spec are you aiming for?

What is Livestock Data Link (LDL)

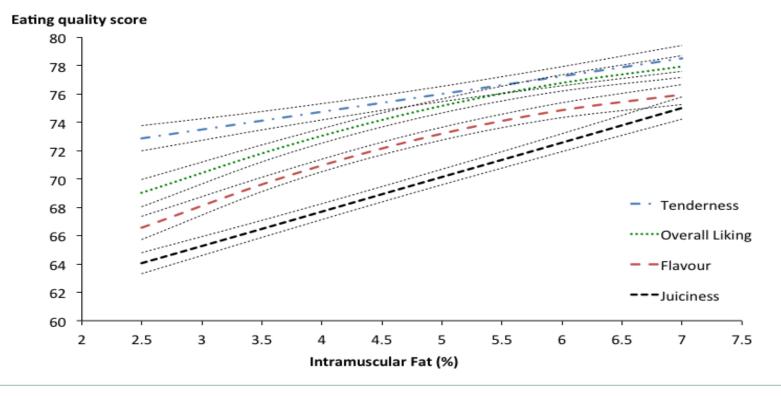

- Centralised on-line feedback system
- Identifies compliance rates of carcases and animal health issues
- Allows performance benchmarking
- Includes NLIS and MSA information
- Allows complex information to be used for simple decision making

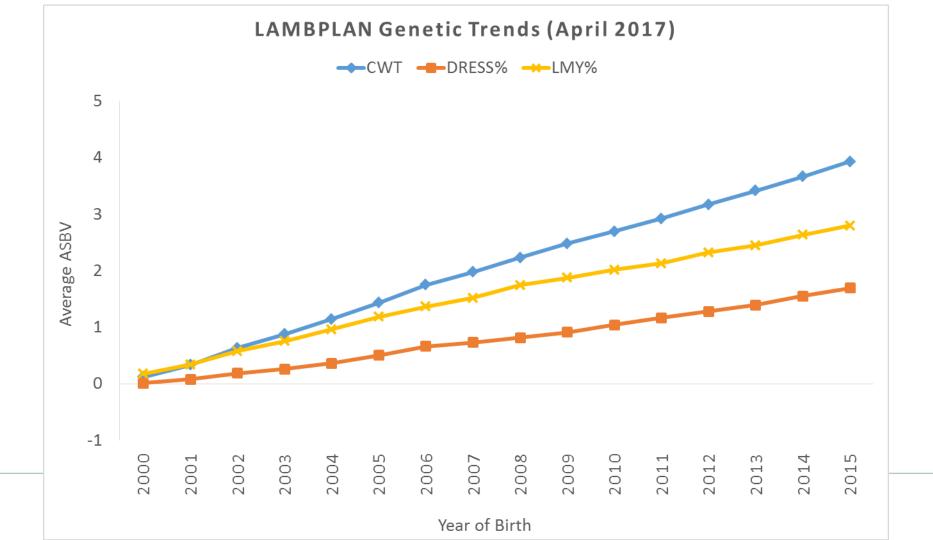
How does LDL Work?

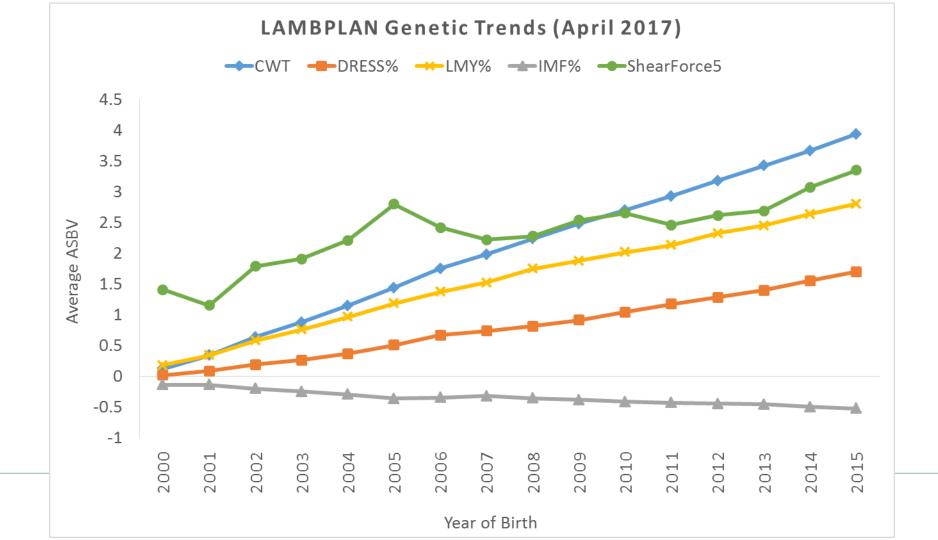

Eating quality

- Key to consumers
- Unfavourable association with Lean Meat Yield
- □ Important for willingness to pay especially long term
- Across country comparisons
- □ Vision for a new Mark II MSA

Key trait is intramuscular fat


- Juiciness, flavour, tenderness
- □ 4.2 ± 0.04% (Xbred mean)
- □ Ideal 5% or more
- Mod/high heritability (0.47)
- Called marbling in beef





IMF vs MSA consumer score

IMF nails juicy and flavour

New Yield and Eating Quality ASBVs

Quality	_	_			LAMBPLAN Average	Top 10%			
	Intra-muscu	lar Fat			-0.5	-0.1			
□ SF5 –	Shear Force		↓		2.7	0.2			
Quantity	,								
Quantity1LMY – Lean Meat Yield12.84.1									
DP%	- Dressing Pe	rcentage		1.7	2.4				
	Trait	IMF	SF5	LMY	DP%				
	ITan	%	kg	%	%				
	ASBV	-0.1	-0.5	2.4	2.0				
	Acc	50	45	62	52				

Terminal Sire Indexes

Two new eating quality indexes

Trait	Carcase +	EQ	Lamb 2020	LEQ	
bwt	0.15	0.06	0.07	0.07	
wwt	2.85	1.55	1.85	1.28	
pwt	4.4	3.15	2.8	2.6	
pemd	1.46	1.07	1.44	1.17	
pfat	0.14	0.04	0.59	0.33	
pfec	0.06	0.16	-52.24	-35.83	
cemd	1.5	1.15	1.42	1.25	
ccfat	-0.5	-0.4	0.07	-0.12	
dress	1.31	1.09	1.1	1.03	
lmy	1.66	0.91	1.14	0.87	
sf5	0.77	-2.41	0.62	-2.06	
imf	-0.27	0.09	-0.14	0.1	
tlike	-1.21	1.42	-1.12	1.27	

Making More From Sheep

AWI Australian Wool

Willingness to pay x eating quality

O'Reilly, Pannier et al 2016

	Fail	Pass (3*)	Credit (4*)	Distinction (5*)
USA	46%	100%	150%	209%
China	57%	100%	147%	212%
AUS	53%	100%	141%	189%

Grilled lamb, hot pot in progress right now

MSA model

Use carcase variables to predict Sheepmeat Eating Quality score

- Hot Carcase Weight
- Lean Meat Yield
 - Direct = DEXA
 - Indirect = GR x eye muscle depth
- Intramuscular Fat
- □ All are significant predictors

So grids will evolve based on lean meat yield and eating quality

- □ They will be more complex
- They will represent objective measures of the carcase
- □ They will include
 - HCW
 - Lean Meat Yield (& fat score)
 - Eating quality index

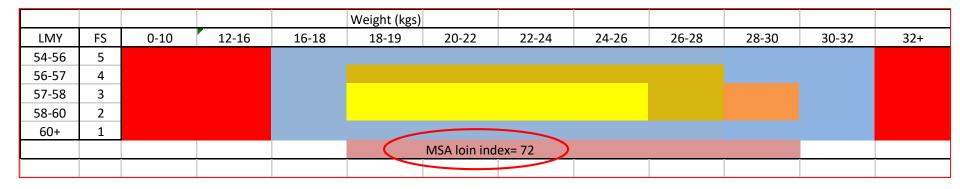
What might future grids look like?

Will include weight.Will include LMY (broken up into forequarter middle and hindquarter)Will include EQ indexPossibly compliance bonus

					Weight (kgs)							
LMY	FS	0-10	12-16	16-18	18-19	20-22	22-24	24-26	26-28	28-30	30-32	32+
54-56	5											
56-57	4											
57-58	3											
58-60	2											
60+	1											
						MSA loin ind	ex= 72					

What might future grids look like?

Will include weight.Will include LMY (broken up into forequarter middle and hindquarter)Will include EQ indexPossibly compliance bonus


					Weight (kgs)							
LMY	FS	0-10	12-16	16-18	18-19	20-22	22-24	24-26	26-28	28-30	30-32	32+
54-56	5											
56-57	4											
57-58	3											
58-60	2											
60+	1											
						MSA loin ind	ex= 72					

The market sweet spot

What might future grids look like?

Will include weight.Will include LMY (broken up into forequarter middle and hindquarter)Will include EQ indexPossibly compliance bonus

4* or above loin (0% failure rate !)

True value of the carcase

Carcase value (\$)

Wt retailValue ofcuts (kg)X(\$)

Value of the cuts (\$/kg)

Key Points

Industry Projections

- Producers retaining more ewes due to high prices
- Major Markets
- Markets generally positive, reduction in processing capacity possible risk
- Lean Meat Yield
- Important to producers, processors and consumers. Be aware of impact on EQ.
- Livestock Data Link
- Delivering better feedback, enables more informed decisions
- Eating quality
- Key to consumers. Can now include in ram buying decisions.
- □ Future grids based on objective measurement of the carcase
- Likely to start including LMY and EQ

