

Turning pasture into product

Brad Nutt

Pasture products?

- Livestock products
- Grain products
 - Pasture is the predominant "break crop" in crop rotations
 - Legume N fix = 25 kg of N per T of legume DM
 - Integrated weed control
- Land protection
 - Perennial grasses
 - Fodder shrub windbreaks
- Tactical flexibility in response to season

Drivers of pasture productivity

- Pasture production
 - Rainfall and timing of rainfall
 - Conversion of rainfall to DM(ave. 12 kg/ha.mm but is >20 kg/ha.mm possible or wanted?)
- Pasture quality
 - Composition (legumes)
 - Seasonality
- Feed budgeting, supplemental feeding and pasture grazing management

Pasture quality in NAR

	CP (%)	DMD (%)	ME (MJ/kg)
Mixed volunteer	18.7	77.6	11.9
Grass dominant	13.3	78.5	11.9
Legume dominant	23.5	77.5	11.7

Data from Grain and Graze 2005 – 2008, G. Moore

GrazFeed Predicts

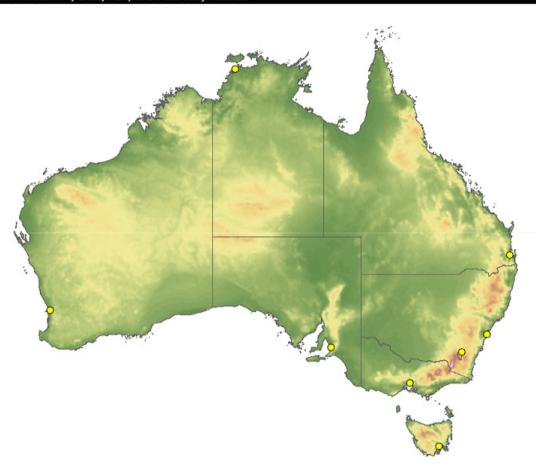
	Intake (kg)	LWG (g)	Wool (g)
Mixed volunteer	1.57	198	17.3
Grass dominant	1.39	165	12.3
Legume dominant	1.71	271	21.3

Merino wether weaners @ 10 months, 36kg

N fertiliser on grasses

	CP (%)	DMD (%)	ME (MJ/kg)
Ryegrass 50kg N	13.1	81.7	12.4
Ryegrass 100kg N	10.6	83.6	12.7
Oats 50 kg N	7.9	72.2	10.8
Oats 100 kg N	7.3	73.1	11

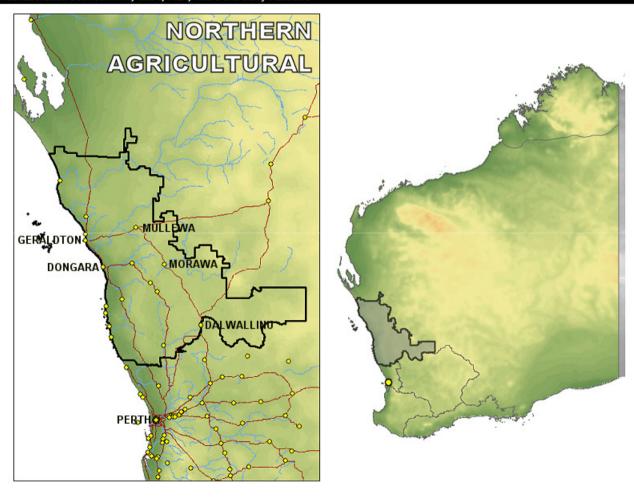
RIRDC – Development of sustainable fodder crop systems with new annual pasture legumes, Wickham et al, 2007


Choose the right species and cultivar

www.pasturepicker.com.au

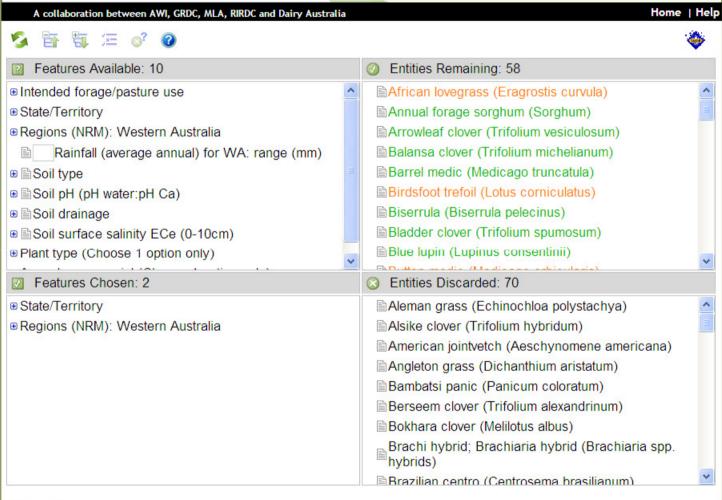
A collaboration between AWI, GRDC, MLA, RIRDC and Dairy Australia

Home | Help



New South Wales / ACT • Northern Territory • Queensland • South Australia • Tasmania • Victoria • Western Australia

A collaboration between AWI, GRDC, MLA, RIRDC and Dairy Australia


Home | Help

Avon • Northern Agricultural • Tropical North • Rangelands • South Coast • South West • Swan

New South Wales / ACT • Northern Territory • Queensland • South Australia • Tasmania • Victoria • Western Australia Australia (all states)

A collaboration between AWI, GRDC, MLA, RIRDC and Dairy Australia

Fact Sheet Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Scientific name(s)
Strengths
Limitations
Plant description
Pasture type and use
Where it grows
Establishment
Management
Animal production
Cuttivars
Further information
Author and date
Download PDF

Go to the top

Balansa clover

Scientific name(s)

Trifolium michelianum

Strengths

- · Sets large amounts of seed.
- · Hardseeded in cool climates
- · Excellent waterlogging tolerance
- · Adapted to a wide range of soil types and pH ranges.
- . Mild salinity tolerance.
- · Tolerant of clover scorch
- Regenerates well on suitable soils under appropriate grazing management.

Limitations

- Not suited to deep infertile sands.
- · Not suited to moderate-high soil salinity.
- · Slow establishment in the first year if sown under cold conditions.

Plant description

Plant: Aerial seeding, erect or semi-erect, much branched, selfregenerating annual temperate legume, growing to over 80 cm tall, but

Australian Trifolium

Pastures have traditionally been used in crop/livestock production systems to provide feed for stock, incorporate atmospheric nitrogen into the soil—in the case of leguminous species—and break pest and diseases cycles.

Choosing the right species and cultivar

- Acid and sandy soils serradella, biserrula, arrowleaf clover (3-6 weeks extra green feed)
- Waterlogged soils balansa clover, persian clover, gland clover, white seeded subclover (yanninicum)
- Alkaline/hard setting soils medics, bladder clover, rose clover, biserrula, gland clover

Choosing the right species and cultivar

- Broadleaved weeds
 - Subclover and clovers, MCPA, 2,4 D, Broadstrike
 - Biserrula, grazing
 - Serradella, Spinnaker/Raptor, autumn cleaning yellow serradella
 - Medics, Broadstrike
- Rotation
 - Biserrula > Serradella/Medic > Clovers > Cadiz FS3-4 crops1-2 crops1 crop0 crops

Inoculation groups

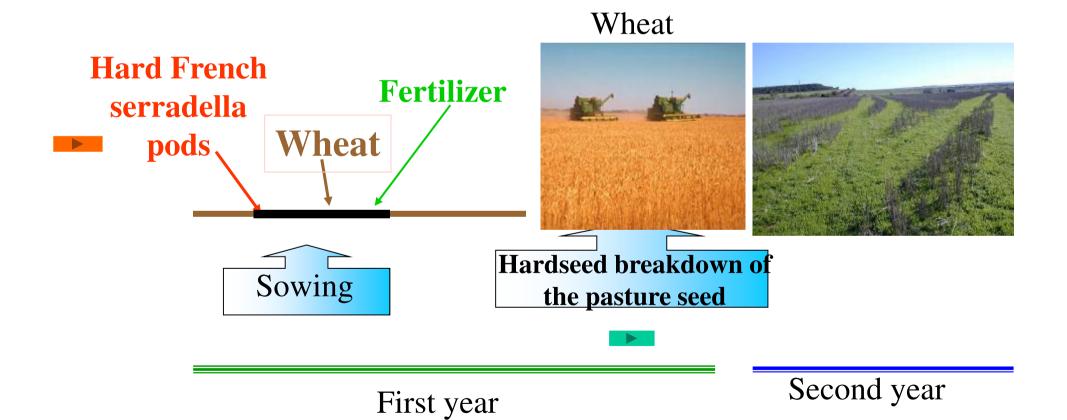
- Clovers Group C (currently WSM1325, essential for
 - bladder clover, Arrowleaf clover, sub
 - response?)
 - Strawberry clover Group O
- Medics Burr medic, Barrel medic Group AM
 - Strand medic, Disc medic, Barrel medic
 - Group AL
- Serradella Group S or G
- Biserrula Group BS

Inoculation methods

- Seed lime pelleting reliable, best done just prior to sowing and sown into wet soil, cheap, peats need to be kept cool!.
- Dry clay granules Convenient, can go into dry soil?, must keep rate up, more expensive, not suited to complex blends
- Dry peat granules Convenient, sown into wet soil?, must keep rate up, more expensive, not suited to complex blends, needs to be kept cool
- Seed polycoat pelleting OK on medics/lucerne, no good on clovers

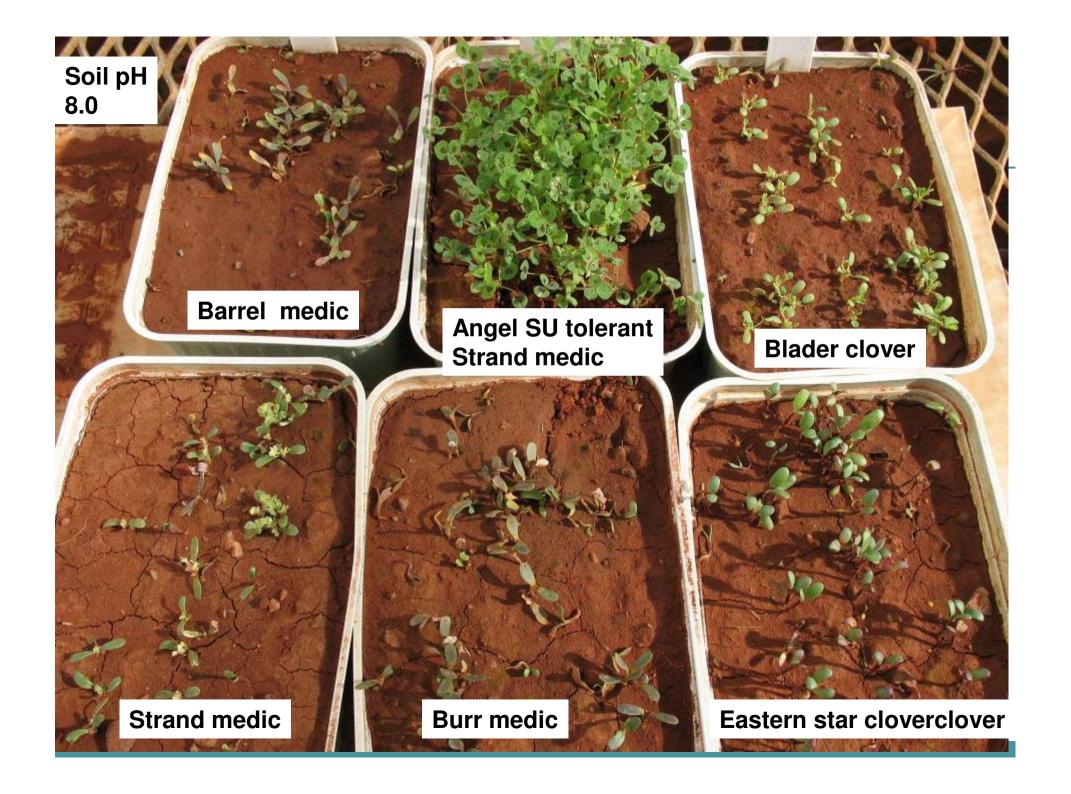
Methods of introduction

- Traditional scarified seed, sow after knockdown, can be slow due to cold
- Dry no non-selective knockdown, gets going on first rains, can be inefficient, keep sowing rates up, scarified seed.
- Twin-sowing
- Summer sowing





Twin sowing



Management for legume pastures

- Avoid sulfonyl urea based herbicides in preceding crop/s
- Blanket wiping vs spraytopping
- Rotation
- Monitor and control insect pests
 - RLEM
 - Aphids
 - Budworm in serradella
 - Lucerne Flea

Management for legume pastures

- P 5 easy steps to ensure you are making money from superphosphate.
- Other nutrients Making better fertiliser decisions for grazed pastures in Australia
 - Critical K levels in sands = 126 mg/kg

Key points

- Legume content is essential for high animal performance
- Look after them if you have them
 - Insect control
 - Adequate nutrition particularly P & K
 - Don't over crop unless sure of the seed bank
 - Avoid SU use in preceding crop
 - Avoid regular spraytopping
- Introduce the right pasture species and cultivar for the situation and don't forget to inoculate

